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Deep Hedging

• Compute (minimal) price and an optimal risk-adjusted hedging strategy 
under the real measure 𝑃 tradding all relevant hedging instruments.

• We’ll essential do optimization under convex risk measures vs the full 
option surface.

• Model-free dynamic programming “reinforcement learning” problem.

Advanced topics:

• Removing the drift to avoid prop trading.

• Bellman version.
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Motivation



• Our approach relies on training under full market data as opposed to 
classic made-up derivatives models with ~2 factors.

• Not sufficient daily market data → need to simulate markers using 
generative methods → different work stream e.g. [1] [2] …
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Market Simulation

__
[1] Multi-Asset Spot and Option Market Simulation, Wiese et al 2021, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3980817 
[2] Operator Deep Smoothing for Implied Volatility, Wiedeman et al, 2024 https://arxiv.org/abs/2406.11520 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3980817
https://arxiv.org/abs/2406.11520


Environment [1]

• We operate in disctete time 𝑡 = 0, … , ∞ under the statistical measure 𝑃.

• We observe “the market” 𝑠𝑡: time, prices, news, historical trading events 
etc and assume it generates our filtration.

• Any publicly observable market quantity 𝑋𝑡 can be written for some 
measurable function 𝑋 as 𝑋𝑡 = 𝑋(𝑠𝑡).

• We also assume here that our trading causes no impact.
• Our framework is easily extended to include impact [2].

4

Framework

__
[1] Deep Hedging, Buehler et all 2018, https://arxiv.org/pdf/1802.03042.pdf 
[2] Lecture Notes Learning to Trade III https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4151043

https://arxiv.org/pdf/1802.03042.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4151043


Trading Instruments

• We assume that we are trading in a market with liquid tradable instruments.
• These include primary assets such as spot, FX as well as derivatives such as options on 

equity, indices etc. We assume interest rates are deterministic and cashflows are 
discounted to today.(1)

• Denote by 𝐻𝑡 ∈ 𝑅𝑛𝑡  the mid prices of tradable instruments available at time 𝑡, 
and by 𝛾𝑡 ∈ 𝑅≥0

𝑛𝑡  their bid/ask spreads.

• Our trading cost for 𝑎 ∈ 𝑅𝑛𝑡  are given by a non-negative convex(2) 𝑐𝑡 with 

𝑐𝑡 𝑎 ↓ 𝑎 𝛾𝑡
′ for 𝑎 ↓ 0

• The latter condition means that we pay the bid/ask spread for small trades.
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Framework

__
(1) If this is not the case, then optimal investment decisions of cash into the available interest rate instruments also need to be considered.
(2) Convexity excludes fixed fee cost which are, in fact, common.



Risk Limits and other Trading Restrictions

• Convex transaction cost allow defining convex limits to trading capacity 
by setting 𝑐𝑡 ¬𝐴 = ∞ outside a convex set 𝐴.

• That means we can use trading cost to impose a wide variety of convex 
trading restrictions of the following type:
• Maximum liquidity: 𝐴 = {𝑎: askcapacity𝑖 ≤ 𝑎𝑖 ≤ bidcapacity𝑖 }
• Total Vega Traded: 𝐴 = {𝑎: | σ𝑖 𝑎𝑖Vega

𝑖
| ≤ Limit}

• Trading restrictions which refer to the current portfolio are not always 
convex, as the available capacity in the market might not be sufficient
to hedge all our risk:
• Total Vega Held: 𝐴 = {𝑎: |PortfolioVega + σ𝑖 𝑎𝑖Vega

𝑖
| ≤ Limit}
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Framework
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Framework
Monetary Utilities

• We use Optimized Certainty Equivalents, OCEs: let 𝑢 be a concave, increasing 
utility function, then

𝑈 𝑋 ≔ sup
𝑐∈𝑅

𝐸 𝑢 𝑋 + 𝑐 − 𝑐

is a monetary utility: increasing, concave and cash-invariant )−𝑈 is a convex 
risk measure).
• From an ML perspective, such measures lend themselves into batch-based optimization.

• Examples for risk aversion λ > 0:
• Expectation: 𝑢 𝑥 = 𝑥

• Entropy: 𝑢 𝑥 ≔ (1 − exp −𝜆𝑥 )/𝜆 in which case 𝑈 𝑋 = −
1

𝜆
log 𝐸 𝑒−𝜆𝑋 .

• CVaR: 𝑢 𝑥 = 1 + 𝜆 min{0, 𝑥}



Vanilla Deep Hedging
• In Vanilla Deep Hedging [1] we are given a fixed horizon 𝑇 to hedge until, and a fixed 

current portfolio 𝑍 with terminal value 𝑍𝑇 ∈ 𝑅.

• Let 𝑎 with 𝑎𝑡 ≡ 𝑎(𝑠𝑡) be a trading strategy. The gains of trading 𝑎 are given as:

𝐺(𝑍; 𝑎) ≔ 𝑍𝑇 + ෍

𝑡=0

𝑇−1

𝑎𝑡 𝐻𝑇 − 𝐻𝑡 ′ − 𝑐𝑡 𝑎𝑡

• Let 𝑎 ⋆ 𝐻𝑇: = σ𝑡 𝑎𝑡 𝐻𝑇 − 𝐻𝑡 ′ and 𝐶𝑇 𝑎 : = σ𝑡 𝑐𝑡(𝑎𝑡) such that

𝐺(𝑍; 𝑎) ≔ 𝑍𝑇 + 𝑎 ⋆ 𝐻𝑇 − 𝐶𝑇 𝑎

• We notice that we do not require any value for 𝑍 outside its terminal payoff in 𝑇.

• If the number of assets or their type (moneyness, time to expiry) vary per time step 
we need a “set invariant” network for representing 𝑎.



• Let 𝑈 be a monetary utility. Then the Vanilla Deep Hedging problem for 
selling a product 𝑍 is given as 

𝑈∗ 𝑍 ≔ sup
𝑎

: 𝑈  𝐺(𝑍; 𝑎) 

𝐺(𝑍; 𝑎) ≔ Π𝑇 − 𝑍𝑇 + 𝑎 ⋆ 𝐻𝑇 − 𝐶𝑇 𝑎

• The sup is taken over all admissible strategies.
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Vanilla Deep Hedging



• Practically write 𝑎 for an option with relative strike 𝑥 and time to expiry 𝜏 as set-invariant 
neural network with network weights 𝜃:

𝑎𝑡
𝜃 ≔ 𝑎𝜃 𝑥, 𝜏; 𝑠𝑡 .

• The problem

max
𝜃

: 𝑈 Π𝑇 − 𝑍𝑇 + 𝑎𝜃 ⋆ 𝐻𝑇 − 𝐶𝑇 𝑎𝜃

• is a then a classic Monte Carlo problem: if we use 𝑁 paths it has the following form which is 
very accessible within modern ML frameworks such as pyTorch or jax:

max
𝜃,𝑦

:
1

𝑁
෍

𝜔=1

𝑁

𝑢 𝑍𝑇 + 𝑎𝜃 ⋆ 𝐻𝑇 − 𝐶𝑇 𝑎𝜃 + 𝑦 − 𝑦

• We note that values for 𝑍𝑇, (𝐻𝑇 − 𝐻𝑡) etc can be pre-computed before running the 
optimization.

• In Reinforcement Learning this is called “Periodic Policy Search”. 10

Vanilla Deep Hedging



• Test first vs cases where we know or guess the theoretical answer [1]
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Vanilla Deep Hedging

__
[1] Deep Hedging, Buehler et all 2018, https://arxiv.org/pdf/1802.03042.pdf 

https://arxiv.org/pdf/1802.03042.pdf


• Delta of a call spread in Black & Scholes [1]
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Vanilla Deep Hedging

__
[1] Deep Hedging, Buehler et all 2018, https://arxiv.org/pdf/1802.03042.pdf 

https://arxiv.org/pdf/1802.03042.pdf


Marginal Pricing:

• We wish to sell a derivative 𝐷 to our client while we already have a 
position 𝑍.

• The marginal price of selling 𝐷 in the presence of 𝑍 is given as

𝑝 𝑍 ≔ 𝑈∗ 𝑍 − 𝑈∗ 𝑍 − 𝐷

• It represents the minimal price we should charge to not be worse off 
vs our existing position 𝑍.

• We note that cash-invariance satisfies the invariance condition

𝑈∗ 𝑍 − 𝐷 + 𝑝 𝑍 = 𝑈∗(𝑍)
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Deep Hedging 



Statistical Arbitrage

14



• We have earlier defined

𝑈∗ 𝑍 ≔ sup
𝑎

: 𝑈 𝑍𝑇 + 𝑎 ⋆ 𝐻𝑇 − 𝐶𝑇 𝑎

• What about 𝑈∗(0) which represents the value of an empty portfolio?

• We say that the market exhibits statistical arbitrage if 𝑈∗ 0 > 0.

• Happens naturally (contrary to static arbitrage).

Statistical Arbitrage



• Statistical Arbitrage is an economic fact.

• Naïve application to Deep Hedging to the SPY with data from the 
period 2015-2025 leads to
• Going long the index

• Selling puts

• Ignore hedging any derivative

16

Statistical Arbitrage



Removing the Drift
• In classic portfolio optimization we only have “linear” assets.
• To remove the drift, we simply divide each asset by the mean return over 

the sample period(1)

𝑑 ෨𝑋𝑡
𝑖 ≔

𝑑𝑋𝑡
𝑖

1
𝑇

(𝑋𝑇 − 𝑋0)

• For markets with complex assets removing the drift distorts the co-
dependence of the instruments, e.g. stock and options thereon.

• Instead of changing the paths we aim now to reweight the observed paths 
such that the drift disappears – that means constructing a new equivalent 
measure 𝑄.
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Statistical Arbitrage



• Assume using the entropy 𝑢 𝑥 ≔
1−𝑒−𝜆𝑥

𝜆

• Cost zero for illustration.

• Under a measure 𝑄 define

𝑈𝑄 𝑋 ≔ sup
𝑦

: 𝐸𝑄 𝑢 𝑋 + 𝑦 − 𝑦 = −
1

𝜆
log 𝐸𝑄 𝑒−𝜆𝑋

• We wish to chose 𝑄 ≈ 𝑃 such that

0 = max
𝑎

: 𝑈𝑄  𝑎 ⋆ 𝐻𝑇  
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Statistical Arbitrage



• Step 1: under 𝑃 find the optimal strategy 𝑎0 for the empty portfolio

𝑎0 ≔ argsup: 𝑈𝑃  𝑎 ⋆ 𝐻𝑇 = argsup𝑎:
1

𝜆
log 𝐸𝑃 𝑒−𝜆 𝑎⋆𝐻𝑇

• Step 2: define the measure

𝑑𝑄 ≔
𝑒−𝜆 𝑎0⋆𝐻𝑇

𝐸𝑃[𝑒−𝜆 𝑎0⋆𝐻𝑇 ]
𝑑𝑃
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Statistical Arbitrage



• Step 3: under the monetary utility 𝑈𝑄:

max
𝑎

: 𝑈𝑄  𝑎 ⋆ 𝐻𝑇 

= max
𝑎

:
1

𝜆
log 𝐸𝑃

𝑒−𝜆 (𝒂+𝑎0)⋆𝐻𝑇

𝐸𝑃[𝑒−𝜆 𝑎0⋆𝐻𝑇 ]

∼ max
𝑎

:
1

𝜆
log 𝐸𝑃 𝑒−𝜆 (𝒂+𝑎0)⋆𝐻𝑇

= 0
• Because 𝑎0 was optimally chosen under 𝑃.

• This shows that the new optimal 𝑎 is zero – in other words, the 
monetary utility 𝑈𝑄 is free of statistical arbitrage
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Statistical Arbitrage
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Statistical Arbitrage

__
[1] Learning Risk-Neutral Implied Volatility Dynamics, Buehler et al 2021, https://arxiv.org/pdf/2103.11948.pdf  

Numerical results of reducing the drift 

https://arxiv.org/pdf/2103.11948.pdf


• The measure 𝑄 is one of many equivalent martingale measures.

• Our specific choice minimizes the entropy of 𝑄 with respect to 𝑃 
among all equivalent martingale measures

𝑄 ↦ 𝐸𝑃

𝑑𝑄

𝑑𝑃
log

𝑑𝑄

𝑑𝑃

    and is called the minimal entropy martingale measure [1].
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Statistical Arbitrage

__
[1] Marco Frittelli. The minimal entropy martingale measure and the valuation problem in incomplete markets . In: Mathematical 
nance 10.1 (2000), pp. 3952.



• In the case of the entropy without transaction cost we have the 
following intuitive result [1]: for a portfolio 𝑍 the optimal strategy 𝑎∗ 
under 𝑈𝑃 is given as

𝑎∗ ≔ 𝑎0 + ෤𝑎

• Where:
• 𝑎0 is the optimal “prop trading” strategy for the empty portfolio under 𝑃.

• ෤𝑎 is the optimal “pure hedging” strategy under the risk-neutral 𝑄.
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Statistical Arbitrage

__
[1] Deep hedging: learning to remove the drift, Buehler et al 2022 https://www.risk.net/cutting-edge/banking/7932226/deep-hedging-learning-to-
remove-the-drift and https://arxiv.org/abs/2111.07844 
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• Fun fact: in discrete time, we can change also the volatility of a 
process by changing measure.
• Experiment: market with 15% annual realized volatility. Option traded with 

20% volatility. Statistical arbitrage is selling the option and delta hedge.

• What happens when we change our measure:
The measure will put more weight on paths with lower realized (discrete 
time) variance per path
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Statistical Arbitrage



• Experiment [1]: market with 15% annual realized volatility. Option traded with 
20% volatility. Statistical arbitrage is selling the option and delta hedge.

• The measure will put more weight on paths with lower realized (discrete 
time) variance per path
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Statistical Arbitrage

Left: paths given the highest 0.1% of probabilities under 𝑄; right: lowest 0.1%

__
[1] Learning Risk-Neutral Implied Volatility Dynamics, Buehler et al 2021, https://arxiv.org/pdf/2103.11948.pdf  

https://arxiv.org/pdf/2103.11948.pdf


Generalization to cost and arbitrary 𝒖

• Recall that 𝑐𝑡 converges for marginal transaction sizes to its marginal 
cost, 𝑐𝑡 𝑎 ↓ 𝑎 𝛾𝑡

′ for 𝑎 ↓ 0.

• Define

26

Statistical Arbitrage

𝑀𝑇 𝑎 ≔ ෍

𝑡

𝑎𝑡 𝛾𝑡′



• Apply similar idea to before [1]: find 𝑎0, 𝑦0 as solution to

sup
𝑎,𝑦

: 𝐸𝑃  𝑢  𝑎 ⋆ 𝐻𝑇 − 𝑀𝑇 𝑎 + 𝑦0 − 𝑦0 

• Define the measure 𝑄 via

𝑑𝑄 ≔ 𝑢′  𝑎0 ⋆ 𝐻𝑇 − 𝑀𝑇 𝑎0 + 𝑦0 𝑑𝑃

27

Statistical Arbitrage

__
[1] Deep hedging: learning to remove the drift, Buehler et al 2022 https://www.risk.net/cutting-
edge/banking/7932226/deep-hedging-learning-to-remove-the-drift and https://arxiv.org/abs/2111.07844 
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• Under the new measure the expected returns of all instruments are 
within bid/ask spread in the following sense:
• The measure 𝑄 is a near-martingale measure [1] in the sense that

𝑏𝑖𝑑𝑡
𝑖 = 𝐻𝑡

𝑖 − 𝛾𝑡
𝑖 ≤ 𝐸𝑄 𝐻𝑇

𝑖 |𝑠𝑡 ≤ 𝐻𝑡
𝑖 + 𝛾𝑡

𝑖 = 𝑎𝑠𝑘𝑡
𝑖

• Therefore, there is no statistical arbitrage under 𝑄 with full (or marginal) 
transaction cost for any OCE utility:

0 = max
𝑎

: ෩𝑈𝑄( 𝑎 ⋆ 𝐻𝑇 − 𝐶𝑇 𝑎  )

• The measure 𝑄 minimizes the ෤𝑢-divergence to 𝑃 among all near-martingale 
measures [1].
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__
[1] Deep hedging: learning to remove the drift, Buehler et al 2022 https://www.risk.net/cutting-
edge/banking/7932226/deep-hedging-learning-to-remove-the-drift and https://arxiv.org/abs/2111.07844 
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Statistical Arbitrage

Full market simulation results [1]: left are expected returns under 𝑃, right under 𝑄 under transaction cost
__
[1] Deep hedging: learning to remove the drift, Buehler et al 2022 https://www.risk.net/cutting-
edge/banking/7932226/deep-hedging-learning-to-remove-the-drift and https://arxiv.org/abs/2111.07844 

Calls

Puts
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• Assume we have built a market simulator for implied volatilities which 
does not have static arbitrage.

• We then removed the drift … such that the price processes become 
(near-)martingales

• We have created with machine learning a stochastic implied volatility 
model … a task not achieved through years of quantitative finance 
research !
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Stochastic Implied Volatility



Deep Bellman Hedging
(on-going research)
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__

[1] Deep Bellman Hedging https://arxiv.org/abs/2207.00932
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Deep Bellman Hedging [1]
• Bellman relationship for an optimal value 𝑉∗.

𝑉∗ 𝑍𝑡
(𝑡)

, 𝑠𝑡 ≔ sup
𝑎

: 𝑈 𝛽𝑡 𝑉∗ 𝑍𝑡+1
𝑡+1

; 𝑠𝑡+1 + 𝑅 𝑍𝑡 , 𝑎, ; 𝑠𝑡 − 𝐶 𝑎; 𝑠𝑡

• Here

• 𝑍𝑡
(𝑟)

is a linear representation at time 𝑡 of the portfolio at time 𝑟. Its update rule is:

𝑍𝑡
(𝑡+1)

≔ 𝑍 𝑡 ⊕ 𝑎 𝐻 𝑡 ′

• The representation is linear in the payoff space; 𝐻(𝑡) denotes the hedges available at 
time 𝑡. Practically 𝑍 is represented as (term structure a matrices of) greeks.

• 𝑅(𝑍𝑡 , 𝑎, 𝑠𝑡) are the rewards from holding 𝑍𝑡  (expiry cash flows, dividends, coupons)

• 𝐶 𝑎; 𝑠𝑡 ≔ −𝑎𝐻𝑡
𝑡

′ − 𝑐(𝑎; 𝑠𝑡) are the cost of trading 𝑎.

• 𝛽𝑡 < 1 is a discount factor.
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Deep Bellman Hedging
• Risk-adjusted Bellman equation:

𝑉∗ 𝑍𝑡
(𝑡)

, 𝑠𝑡 ≔ sup
a

: 𝑈 𝛽𝑡 𝑉∗ 𝑍𝑡+1
𝑡

⊕ 𝑎 𝐻𝑡+1
𝑡

′; 𝑠𝑡+1 + 𝑅 𝑍𝑡 , 𝑎, ; 𝑠𝑡 − 𝐶(𝑎; 𝑠𝑡)

• Theorem
• If 𝑈 is an OCE monetary utility, if 𝛽𝑡 < 1 − 𝜖, if rewards 𝑅 are finite (e.g. if 𝑎𝑡 is

limited to a compact set) then the above has a unique solution 𝑉∗.
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Deep Bellman Hedging
• Hard to learn since most cashflows (non-zero rewards) are very sparse.

• Alternative: assume 𝐵 is a valuation model such as LV which captures 
cashflows and provides a baseline value. Then estimate

෨𝑉 𝑍, 𝑠 ≔ 𝑉∗ 𝑍, 𝑠 − 𝐵 𝑍, 𝑠

• Because of the linearity of baseline models we can shift the change of value 
of the baseline model into rewards ෨𝑅 which now contain mark-to-market 
changes [1]:

• ෨𝑉 𝑍𝑡
𝑡

, 𝑠𝑡 ≔ sup
a

: 𝑈 𝛽𝑡
෨𝑉 𝑍𝑡

𝑡
⊕ 𝑎 𝐻𝑡

𝑡
′; 𝑠𝑡+1 + ෨𝑅 𝑍𝑡 , 𝑎, ; 𝑠𝑡 − 𝐶(𝑎; 𝑠𝑡)

__

[1] Deep Bellman Hedging https://arxiv.org/abs/2207.00932
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Deep Bellman Hedging

https://arxiv.org/abs/2207.07467

• Implementation with fixed 𝑇: worked 
https://arxiv.org/abs/2207.07467 but is overkill

• Actual actor/critic: pretty unstable with results so far for only simple 
cases (such as portfolios of vanillas)

• More work to be done

https://arxiv.org/abs/2207.07467


Please ask questions
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